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F O R M A T I O N  OF A P E T A L - S H A P E D  S T R U C T U R E  

AT T H E  F R O N T  OF A N  A X I S Y M M E T R I C  LIQUID F I L M  

I N D U C E D  BY C O L L I S I O N  OF A DROP W I T H  A FLAT S U R F A C E  
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A model for the formation of a petal-shaped structure is proposed that is based on Rayleigh- 
Taylor instability occurring at the stage of transition of supersonic flow to forced flow. At 
this stage, there is abrupt deceleration of the flow, reaching (10 s-101~ A dispersion relation 
is derived that allows one to obtain the length of the wave whose amplitude increases with 
maximum rate. The number of petals formed is determined assuming that this quantity is 
constant in time. 

In the present paper, we consider the formation of a petal structure at the front of an initially axisym- 
metric radial jet induced by collision of a drop with a flat solid surface. This phenomenon has been noted by 
researchers from the beginning of studies of the problem of drop collisions with solid surfaces. However, at 
present, there is no qualitative theory of this process and the nature of instability leading to the formation 
of the petal structure is not yet understood. In the present paper, a detailed consideration of all collision 
stages shows that at the stage of transition from the "supersonic" to the stage of forced spreading, the liquid 
is subjected to large accelerations. This suggests that precisely Rayleigh-Taylor instability is responsible for 
the loss of axial symmetry and formation of petals. 

Mode l  of Collision. Let us consider a collision of a liquid spherical drop of radius r0 with a flat rigid 
surface. Prior to the collision, the drop has velocity u0 oriented along the normal to the surface. Introducing 
a coordinate system with origin at the frontal point, the z axis oriented toward the particle, and the r axis 
directed along the surface, we find the coordinate re(t) of the intersection of the moving sphere with the plane 
z = 0. According to the results of [1], the drop velocity remains constant and equal to u0 throughout the 
collision process. Using this (act, we obtain 

t " dr< . ,  uo(ro- ot) 
-7o-o ~ J ' ~ = u A t J  = [ u o t ( 2 r o  - ~ot)]~/~ 

From the last expression it follows that there is the time interval [0, tl] in which the rate of displacement 
of the contact spot boundary exceeds the perturbation velocity c in the liquid. Therefore, within this time 
interval, the free boundary of the drop remains undeformed and radial flow does not develop. 

We define tl as the time at which the rate of spread of the contact spot decreases to the perturbation 
velocity in the liquid c, i.e., uc(tl) = c. The solution of the last equation is easily obtained: 

t l = r~ ( ~ ) 

(M = uo/e is the Mach number). 
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In the cases considered here, the particle-surface collision underheating velocities are limited by Mach 
numbers M << 1. Therefore, the previous expression can be written as 

r0 M2" t: = (1 )  

From this moment, the shock-compressed region begins to unload by deformation of the free surface and 
radial flow develops whose initial velocity can be estimated as follows. 

We consider a small vicinity of the contact line shown in Fig. 1. We go over to a movable coordinate 
system in which the contact spot boundary is immovable. In this coordinate system, the liquid velocity vector 
u~ makes an angle 0 with the solid surface. This corresponds to the problem of oblique collision of a jet with 
an obstacle [2], whose solution indicates that the radial flow velocity u~0 coincides with u~. 

As noted above, radial flow commences at the moment t: when the contact spot boundary velocity 
reaches the speed of sound in the liquid. Using Fig. 1, with allowance for (1), we find the contact spot radius 
rc(t:),  the angle 0(tl), and u~ corresponding to this moment of time tl: 

r~(t l )  = r0M/v/1 + M 2 ~ r0M; (2) 

0(tl) = 0 :  = a r c s i n ( r c ( t l ) / r o )  ,,,M; (3) 

= u 0 / s i n  01. (4) 

Going over to a laboratory coordinate system, we obtain 

uro = uc + uo /  sinO(tl)  = u0(1 + cos 01)/sin0:. (5) 

With allowance for (3) and the condition M << 1, expression (5) takes the form 

Uro = 2u0/M = 2c. 

Thus, the initial velocity of the radial flow is equal to the speed of sound in the liquid. This conclusion 
is in good agreement with the results of [3]. 

From time tl, unloading of the shock-compression region begins, and the pressure drops to the pressure 
of forced spreading [4]. At time t2 = 4to~c, the forced spreading commences. In the time interval (t:, t2), 
the velocity decreases from the speed of sound to about the initial collision velocity u0. We estimate the 
characteristic average acceleration of the radial flow at the second stage: 

a ~ c /(4r0). (6) 

Deriving formulas (6), we ignored the splash jet at the forced stage because of the smallness of the 
Mach number. For the characteristic parameters of our problem, this is a large quantity, and, hence, it is 
reasonable to assume that  the formation of the petal structure is related to Rayleigh-Taylor instability. 
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R a y l e i g h - T a y l o r  Ins tab i l i ty .  An analysis of the experimental  da ta  of [5, 6] shows tha t  the number 
of petals increases with increase in the collision velocity, and a-necessary condition for formation of the 

petal s t ructure  is the "collision" condition ti << tosc. Here ti  =- 2ro/uo  is the characteristic time of collision, 
tosc = 27rv/pr0a/(8cr) is the characteristic time of free oscillations of the drop, and p and a are the density and 
surface tension of the drop material. Introducing the Weber number  We = prou2/a ,  we write the "collision" 
condition as 

>> 1. (7) 

When condition (7) is satisfied, the characteristic length of the perturbat ion is much shorter than the 
perimeter of the outer  boundary (front) of the radial flow. Therefore,  in a stability analysis, it is reasonable 
to use the approximat ion of a flat front. According to [7], we write the following equations of the linear 
hydrodynamics of an ideal incompressible liquid in a coordinate  system attached to the film front (the 
unperturbed front of the film has the coordinate y = 0, and the y axis is directed to the depth  of the liquid): 

Ou 1 0 p  Ov 1 0 p  Ou Ov 
- - -  = a ,  - -  + = 0 .  ( S )  

Ot p Ox '  Ot p Oy Ox -~y 

Here a is the acceleration of the film front and u and v are the projections of the velocity vector onto the x 
and y axes, respectively. 

Since there is no stationary motion in the chosen reference system, the perturbed fields of velocities 
and pressures can be wri t ten as 

! ! 
u = u ,  v = v t, P = P o  - p a y + p ,  (9) 

where P0 is the film front pressure (for y = 0); primes indicate per turbat ions of the fields of corresponding 
quantities. Thus,  Eqs. (8) become 

Ou t 1 Op t Ov t 1 0 p  I Ou t Ov t 

'Or = p Ox Ot p Oy Ox +-~-y = 0. (i0) 

The boundary  condition follows from the absence of normal stresses at the front: 

02h~ 
P - = p o ,  ( 1 1 )  

where h t is the instantaneous normal coordinate of the front. Here we ignore the air density since it is 
negligible compared to the liquid density. Taking into account the stat ionary pressure distribution (9), we 
write (11) for y = hi: 

(92h t 
p' - pah'  - a ~ = 0. (12) 

The  kinematic condition with accuracy up to first-order infinitesimal terms takes the form 

Oh ~ 
v' = - - .  (13) 

Ot 

We seek a solution of system (10), (12), and (13) in the form 

r 

v' = ~(y) exp ( i k x  + wt) .  (14) 

Here k = 27r/)~ is the wavenumber, ,~ is the wavelength, and co is the complex frequency of oscillations. For 
the chosen form of perturbations,  instability of the boundary  is indicated by the presence of a positive real 

term in the expression for a~. 
Subst i tut ing (14) into (10) and (13), we obtain equations for the perturbation amplitudes. It should 

be noted tha t  the kinematic and boundary conditions are used for y = 0 rather than for y = h t because 
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of the smallness of h'. Next, substituting the amplitudes of disturbances into (12), we obtain the following 
dispersion relation between the angular frequency w and the wavenumber k: 

= a k ( 1 -  (15) pa /" 

The length of the wave whose amplitude kmax increases with maximum rate is determined from the 
extremum condition for the function ~(k) (15): 

or 

]~max = V ~ / ( 3 5 r ) ,  Amax = 27FV/~/ (Pa) .  (16) 

We introduce the quanti ty N = 2~r0/Amax, which indicates how many wavelengths are present along 
the characteristic perimeter of the drop. Then, from (6) and (16) we obtain the following rough estimate 
for N: 

N ~ . (17)  

To determine the exact number of petals formed n, it is necessary to know the acceleration of the film 
front at the moment the stability is lost. Attempting to solve this problem, we assume that throughout the 
process of spreading, the number of petals formed at time t l ,  remains unchanged i.e., n = const. Using this 
condition, we can write 

27rr(t1) = nA(tl), 2~rr(t) = hA(t), (18) 

where r ( t )  is the current radius of the front. 
From Eqs. (18) it follows that at any time, an integer and time-independent number of waves is present 

at the front of the radial flow. From (18) we obtain 

r( t )  = r(ti) A(t). (19) 

Since a very short time interval (tl, t2) is considered, the front radius of the radial flow can be identified 
with the radius of the contact spot. In this case, we can write 

r(t)  = ro , 2 ~ t  =_ ro f ( t ) .  (20) 
y ro 

Using Eqs. (2), (16), and (20), we write Eq. (19) in the form 

a ( t ) = a ( h ) ( r ( h ) )  2 1 =a (h )M2  1 (21) 
" r0 / ~ f2(t)" 

Using formula (21), we can express a( t l )  in terms of the known average acceleration a (6): 

~t = t2 1 t----~ a(t) dt ~ t2 dt = a(tl) 8 M'  
t l  t l  

o r  

a / ( 4 r 0 )  

a ( h )  ~- (M/8)ln(8/M)" 

Knowing the instantaneous acceleration (22), we obtain the number n of petals formed: 

2~rr(tl) r0M [ ~We 1/2 / , M  8 \-1/2 
" :  �9 

(22) 

(23) 
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Fig. 2 

Figure 2 shows the number of petals versus Weber numbers for typical Mach numbers. The theoretical 
results were tested using the experimental data obtained for collisions of melted metal drops with cool surfaces 
with total control of drop parameters (diameter, velocity, and temperature) immediately prior to collision [6]. 
Rapid solidification of drops in the process of spreading enabled us to record the shape of the petal structure. 
It is interesting to note that the experimental data obtained for numbers We ~,, 100 and M ,,~ 0.01 give n = 26 
and a calculation using (23) gives n = 32. 

The studies performed suggest that Rayleigh-Taylor instability leads to formation of a petal structure 
at the front of the radial flow induced by drop collision with a solid surface. 

This work was performed within the framework of the INTAS Project (No. 94-672). 
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